Course Unit Title	MOE504 Process Engineering
Programme of study	MSc in Oil and Gas and Offshore Engineering
Lecturer	DrIng. Paris A. Fokaides
Type of course unit	Compulsory
ECTS	7
Year of study:	1
Semester(s) offered	Fall Semester 2012, 2013, 2014, 2015
Course content	 Introduction to process engineering
	 Presentation and analysis of main physical and chemical processes
	 Applied process engineering in the oil and gas industry
Course modules:	1. Introduction to process engineering
	 Definition of process
	 Mass, energy and momentum conservation
	 Analogy between heat and mass transfer
	 Process flow charts
	2. Mass Transfer
	 Mass diffusion
	Boundary Conditions
	 Steady and transient mass diffusion
	 Mass convection
	3. Physical Processes
	 Heat transfer in process engineering
	 Types of heat exchangers
	 Analysis of heat exchangers
	 Design and selection of heat exchangers
	 Simultaneous heat and mass transfer
	4. Chemical Processes
	 Chemical reaction kinetics
	 Chemical reactors operation and design
	 Analysis of chemical reactors
	 Design and selection of chemical reactors
	Catalysis and catalysts
	5. Applied process engineering in the oil and gas industry
	 Boiling and condensation heat transfer
	 Boiling regimes and the boiling curve
	 Film and dropwise condensation
	 Chemical reactors in refineries
	 Catalytic refinery processes
Textbooks:	Levenspiel O. (1999). Chemical Reaction Engineering. John Willey & Sons.
Instruction language	English
External reference	link