Title of Droiget	
Title of Project	
Project Acronym	ESTIMatE
Funding Program	H2020-EU.3.4.5.5.
Project Identifier	H2020-CS2-CFP07-2017-02
Total Budget	1799875 €
Starting – Ending Date	11/2018-10/2021
Consortium	1. Barcelona Supercomputing Center, Spain, Coordinator
	2. Tecnische Universität Berlin, Germany
	3. Universitat Polytecnica de Valcencia, Spain
	4. Technische Universiteit Eindhoven
	5. Technische Universität Darmstadt, Germany
	6. Karlsruher Institut für Technologie, Germany
	7. Universität Stuttgart, Germany
Project Objectives	The main objective of ESTiMatE is to develop a modelling strategy using CFD sim-
	ulations for the prediction of soot in terms of chemical evolution and particle for-
	mation in conditions relevant to aero engine operation. The model developments
	are based on the use of detailed chemical kinetics for kerosene surrogates, and
	advanced combustion and sprav models validated with reference experiments. ES-
	TiMatE develops an advanced methodology based on advanced soot prediction
	models integrated into high-fidelity simulations. It includes the development of effi-
	cient algorithms for the coupling of soot particles with gas phase dynamics allowing
	the use of large-scale applications with high computational efficiency. ESTiMatE
	will contribute to the characterization and prediction of the combustion process and
	subsequent emissions to increase the predictivity and reliability of soot predictions
	in the aeronautical sector.
Work Packages	WP1 Coordination and Management
	WP2 Development of soot models
	WP3 Coupling soot models into different combustion
	WP4 Assessment of soot models
	WP5 Soot validation experiments
	WP6 Modelling of primary spray
	WP7 Exploitation and dissemination
External References	https://estimate.bsc.es/

Research Project Fact Sheet